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COURSE NOTES, 2015

STEVE LESTER AND ZEÉV RUDNICK

1. About this course

The goal of the course is to study some problems in the theory of primes
and the effect of prime factorization on the distribution of various sequences
of integers.The name “sieve theory” suggests a collection of techniques and
ideas which have a distinct flavor than other methods in analytic number
theory, such as the theory of L-functions, but they are often applied together
with other techniques.

Rather than try to define what are sieve methods, I will describe some of
the problems that we shall study.

1.1. PNT. The Prime Number Theorem says that the number π(x) of
primes up to x is asymptotically Li(x) =

∫ x
2

dt
log t ∼ x/ log x. We shall not

prove this, which some will have seen in other courses, but will give weak
substitutes which shall suffice for the first half of the course.

1.2. Twin primes. This is the statement that for any even h > 0, there
are infinitely many integers n so that both n and n + h are prime. This is
currently open. A quantitative conjecture asserts that

#{n ≤ x : n, n+ h prime} ∼ S(h)
x

(log x)2

for a certain constant S(h), which is positive if h > 0 is even.
While this is vastly open (no lower bounds), sieve theory provides upper

bounds of the correct order of magnitude (Brun, Selberg). We will see how
to achive this.

1.3. Bounded gaps. An alternative formulation of the twin prime conjec-
ture for h = 2 is that there are infinitely n so that [n, n + 2] contains two
primes. A major result due to Yitang Zhang in 2013 is that there are infin-
itely many n so that [n, n+107] contains two primes; this is called “bounded
gaps”. The number 107 has subsequently been improved, the current record
being 246. A few months later, James Maynard, using a different idea, im-
proved this to say that given any m, there is some Hm <∞ so that there are
infinitely many n’s so that the interval [n, n + Hm] contains at least m + 1
primes (so H1 = 246).
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1.4. Primes and squarefrees represented by polynomials. A very am-
bitious problem is to show that every reasonable polynomial represents in-
finitely many primes, for instance to show that there are infinitely many
primes of the form n2 + 1.

Instead, one can ask about representing squarefrees. The density of
squarefrees is (as we shall see) 1/ζ(2) so it is easier to be squarefree than it
is to be prime. One can ask, given a reasonable polynomial f(x), if there are
infinitely many n so that f(n) is squarefree. We shall show (Ricci, 1930’s)
that this is true for quadratic polynomials such as f(x) = x2 + 1. Hooley in
the 1960’s dealt with the cubic case deg f = 3, and beyond that nothing is
known to date.

1.5. Function field analogues. Several of these problems make sense for
the ring Fq[x] of polynomials over a finite field Fq, and it turns out that
some of these problems are more tractable there. We will spend some time
discussing this circle of ideas.

2. Arithmetic functions

2.1. Definition and examples of arithmetic functions. An arithmetic
function is a complex-valued function on the positive integers α : N≥1 → C.

Here are some examples:

• the constant function 1(n) = 1, ∀n ≥ 1;

• The delta function δ(n) =

{
1, n = 1

0, n > 1

• The Möbius function µ, defined for square-free integers n = p1 ·. . .·pk
to be (−1)k, and is zero otherwise. In particular µ(1) = 1.
• The divisor function, giving the number of divisors of an integer:

τ(n) = {(a, b) : a, b ≥ 1, a · b = n} =
∑
d|n

1

More generally, we have higher divisor functions, for integer r ≥ 2,
defined as

τr(n) := {(a1, . . . , ar) : aj ≥ 1, a1 · . . . · ar = n}

• The power functions ns

• Sum of divisors: If s ∈ C then set σs(n) =
∑

d|n d
s.

• The von Mangoldt function Λ(n) =

{
log p, n = pk, k ≥ 1

0, otherwise

The set of A = C[N≥1] of all arithmetic functions form an algebra over C
under addition and pointwise multiplication.
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2.2. Dirichlet convolution. Another useful binary operation is called Dirich-
let convolution: If α, β ∈ A, their convolution is defined as

α ∗ β(n) :=
∑
ab=n

α(a)β(b) =
∑
d|n

α(d)β(
n

d
) .

Here and elsewhere, the notation
∑

d|n denotes the sum over all positive

divisors of n.
Some elementary properties of Dirichlet convolution are

• Commutativity: α ∗ β = β ∗ α
• Associativity (α ∗ β) ∗ γ = α ∗ (β ∗ γ).
• The delta function is the neutral element for convolution: δ ∗α = α,
∀α ∈ A.

Using Dirichlet convolution, we can express some of the arithmetic func-
tions we have just seen in terms of others. For instance, by definition

τ = 1 ∗ 1

and more generally, for r ≥ 2 (assuming τ1 = 1)

τr = τr−1 ∗ 1 ,

and the sum of divisors functions are given by

σs = 1 ∗ ns .

Exercise 1. Show that log = Λ ∗ 1, that is∑
d|n

Λ(d) = logn .

2.3. Multiplicative functions. An arithmetic function α is multiplicative
if it satisfies α(1) = 1 and for any coprime integers m, n,

(1) α(mn) = α(m)α(n), gcd(m,n) = 1 .

A function is completely multiplicative if α(mn) = α(m)α(n) for any (not
necessarily coprime) integers m,n ≥ 1.

Note: Sometimes one defines a multiplicative function as any function
which is not identically zero, and satisfies the relation (1); one then shows
that necessarily α(1) = 1.

Examples:

• The power functions ns and the constant function 1 are strongly
multiplicative.
• The delta function δ is strongly multiplicative.
• µ is multiplicative by its definition.

It is clear from the definition that a multiplicative function is determined
by its values on prime powers, since by induction if n =

∏
j p

ej
j is the prime

factorization of n, then

(2) α(n) =
∏
j

α(p
ej
j ) .
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The basic property that we need it that convolution preserves multiplica-
tivity:

Proposition 2.1. If α, β ∈ A are multiplicative, then so is α ∗ β.

Proof. Suppose gcd(m,n) = 1. Then we claim there is a bijection

{divisors D | n} ↔ {ordered pairs of coprime integers (c, d), c | m, d | n}
where the maps take (c, d) 7→ c · d =: D which is a divisor of mn, and given
a divisor D of m ·n, it can be uniquely written as D = c · d where c | m and

d | n. This is seen by taking the prime factorization m =
∏
i p
ai , n =

∏
j q

bj
j

where since m,n are coprime, pi 6= qj . Then if D =
∏
i p
ui
i

∏
j q

vj
j is the

factorization of D, where necessarily ui ≤ ai, vj ≤ bj then take c =
∏
i p
ui
i

and d =
∏
j q

vj
j .

Then we compute

α ∗ β(mn) =
∑
D|mn

α(D)β(
mn

D
)

=
∑
c|m

∑
d|n

α(cd)β(
mn

cd
)

Since c, d are coprime, α(cd) = α(c)α(d). Since m, n are coprime, so are
m/c and n/d and hence β(mncd ) = β(mc )β(nd ). Hence we find

(α ∗ β)(mn) =
∑
c|m

∑
d|n

α(c)α(d)β(
m

c
)β(

n

d
)

=
∑
c|m

α(c)β(
m

c
)
∑
d|n

α(d)β(
n

d
) = (α ∗ β)(m) · (α ∗ β)(n)

proving multiplicativity, after noting that α ∗ β(1) = α(1)β(1) = 1. �

As a corollary, we immediately see that the divisor function τ = 1 ∗ 1
is multiplicative, and by induction so are the higher divisor functions τr =
τr−1 ∗ 1.

We can now use the above to prove a fundamental property of the Möbius
function:

Proposition 2.2. µ ∗ 1 = δ, that is∑
d|n

µ(d) =

{
1, n = 1

0, n > 1

Proof. Since µ and 1 are multiplicative, so is µ ∗ 1; and so is δ. Hence it
suffices to prove the identity on prime powers. So for a prime power pe,
e ≥ 1, the divisors are {1, p, . . . , pe} and then

(µ ∗ 1)(pe) =

e∑
j=0

µ(pj)
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Since µ(pj) = 0 for j ≥ 2, and e ≥ 1, we are left with

µ ∗ 1(pe) = µ(1) + µ(p) = 1− 1 = 0 = δ(pe)

as claimed. �

As a corollary we get the Möbius inversion formula: If α, β ∈ A satisfy

α(n) =
∑
d|n

β(d)

then we can recover β from α by

β(n) =
∑
d|n

µ(d)α(
n

d
)

Indeed, the first relation says that α = β ∗ 1. Hence

α ∗ µ = (β ∗ 1) ∗ µ = β ∗ (1 ∗ µ) = β ∗ δ = β

2.4. Dirichlet series. An arithmetic function α ∈ A has polynomial growth
if there is some A ≥ 0 so that |α(n)| � nA, for all n� 1.

For such an arithmetic function α of polynomial growth, we define an
associated Dirichlet series Dα(s) by

Dα(s) :=

∞∑
n=1

α(n)

ns

This converges for all complex s ∈ C with <(s) > A+ 1, and hence defines
an analytic function in that half-plane.

Examples

• The Dirichlet series of δ is Dδ(s) = 1.
• The constant function 1 gives the Riemann zeta function

Dδ(s) =

∞∑
n=1

1

ns
= ζ(s), <(s) > 1

Lemma 2.3. If α, β ∈ A have polynomial growth, then so does their con-
volution α ∗ β and the corresponding Dirichlet series is the product

Dα∗β(s) = Dα(s)Dβ(s), <(s)� 1
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Proof. For <(s)� 1,

Dα(s)Dβ(s) =
∑ α(m)

ms

∑
n

β(n)

ns

=
∑
m,n≥1

α(m)β(n)

(nm)s

=

∞∑
N=1

1

N s

∑
m,n≥1
m·n=N

α(m)β(n)

=
∞∑
N=1

1

N s
α ∗ β(N) = Dα∗β(s)

�

As a corollary we see that the Dirichlet series associated to the Möbius
function is 1/ζ(s):

(3)
∞∑
n=1

µ(n)

ns
=

1

ζ(s)
, <(s) > 1

Indeed, by Möbius inversion,

1 = Dδ(s) = Dµ∗1(s) = Dµ(s) ·D1(s)

and since D1(s) = ζ(s) we are done.
An important property of the Dirichlet series associated to multiplicative

functions is having an Euler product:

Proposition 2.4. If α is a multiplicative function of polynomial growth,
then

Dα(s) =
∏

p prime

∞∑
j=0

α(pj)

pjs
, <(s)� 1

As an example, we obtain Euler’s product for the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1, <(s) > 1 .

3. Application: The density of squarefree integers

As a first application of the material of Section 2, we use a very simple
sieve to find the density of squarefree integers.

An integer n is squarefree if it has no square factors, that is if there is no
d > 1 so that d2 | n. Every integer n ≥ 1 can be uniquely written in the
form

n = fs2, f squarefree

and n is squarefree if and only if s = 1; we will write s = s(n).
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Proposition 3.1. The number F (x) of squarefree integers up to x is

#{n ≤ x : n squarefree} =
x

ζ(2)
+O(

√
x)

Denote the indicator function of squarefrees by µ2:

µ2(n) =

{
1, n squarefree

0, otherwise

We need a representation of µ2 using the Möbius function:

Lemma 3.2.

µ2(n) =
∑
d2|n

µ(d)

Proof. We use the decomposition n = f(n)s(n)2 with f(n) squarefree. Since
n is squarefree if and only if s(n) = 1, we can write (recall

∑
d|s µ(d) = 0 if

s > 1)

µ2(n) = δ(s(n)) =
∑
d|s(n)

µ(d)

Now d | s(n) if and only if d2 | s(n)2, and since f(n) is squarefree, this
happens if and only if d2 | n. Thus∑

d|s(n)

µ(d) =
∑
d2|n

µ(d)

which proves our claim. �

Proof of Proposition 3.1. Using Lemma 3.2 , we write

F (x) =
∑
n≤x

µ2(n) =
∑
n≤x

∑
d2|n

µ(d) .

Now we switch order of summation, noting that the d’s will range up to
√
x:

F (x) =
∑
d≤
√
x

∑
n≤x
d2|n

µ(d)

The number of n ≤ x, such that d2 | n is

b x
d2
c =

x

d2
+O(1)

and hence we find

F (x) =
∑
d≤
√
x

µ(d)
( x
d2

+O(1)
)

= x
∑
d≤
√
x

µ(d)

d2
+O(

∑
d≤
√
x

1)
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The series above is given by∑
d≤
√
x

µ(d)

d2
=
∞∑
d=1

µ(d)

d2
+O

∑
d>
√
x

1

d2


where we have used |µ(d)| ≤ 1. The infinite sum is, by (3)

∞∑
d=1

µ(d)

d2
=

1

ζ(2)

and thus we find
F (x) =

x

ζ(2)
+O(

√
x)

as claimed. �

Exercise 2. Let k ≥ 2. An integer n is k-free if dk - n for all d > 1. Show

that the number of k-free integers up to x is x/ζ(k) +O(x1/k).


